Local h-Vectors of Quasi-Geometric and Barycentric Subdivisions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SUBDIVISIONS AND LOCAL h-VECTORS

In Part I a general theory of f-vectors of simplicial subdivisions (ortriangulations) of simplicial complexes is developed, based on the concept of lo-cal h-vector. As an application, we prove that the h-vector of a Cohen-Macaulaycomplex increases under "quasi-geometric" subdivision, thus establishing a spe-cial case of a conjecture of Kalai and this author. Techniques include c...

متن کامل

f-VECTORS OF BARYCENTRIC SUBDIVISIONS

For a simplicial complex or more generally Boolean cell complex ∆ we study the behavior of the f and h-vector under barycentric subdivision. We show that if ∆ has a non-negative h-vector then the h-polynomial of its barycentric subdivision has only simple and real zeros. As a consequence this implies a strong version of the Charney-Davis conjecture for spheres that are the subdivision of a Bool...

متن کامل

CUBICAL SUBDIVISIONS AND LOCAL h-VECTORS

Face numbers of triangulations of simplicial complexes were studied by Stanley by use of his concept of a local h-vector. It is shown that a parallel theory exists for cubical subdivisions of cubical complexes, in which the role of the h-vector of a simplicial complex is played by the (short or long) cubical h-vector of a cubical complex, defined by Adin, and the role of the local h-vector of a...

متن کامل

A survey of subdivisions and local h-vectors

The enumerative theory of simplicial subdivisions (triangulations) of simplicial complexes was developed by Stanley in order to understand the effect of such subdivisions on the h-vector of a simplicial complex. A key role there is played by the concept of a local h-vector. This paper surveys some of the highlights of this theory and recent developments, concerning subdivisions of flag homology...

متن کامل

On Face Vectors of Barycentric Subdivisions of Manifolds

We study face vectors of barycentric subdivisions of simplicial homology manifolds. Recently, Kubitzke and Nevo proved that the g-vector of the barycentric subdivision of a Cohen–Macaulay simplicial complex is an M -vector, which in particular proves the g-conjecture for barycentric subdivisions of simplicial homology spheres. In this paper, we prove an analogue of this result for Buchsbaum sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2018

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-018-9986-z